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ABSTRACT

Maritime assets such as ports, harbors, and veaselsulnerable to a variety of near-shore threatsh as small-boat
attacks. Currently, such vulnerabilities are adsked predominantly by watchstanders and manuabddeveillance, which
is manpower intensive. Automatic maritime videovsillance techniques are being introduced to reduenpower costs,
but they have limited functionality and performanEer example, they only detect simple events siscperimeter breaches
and cannot predict emerging threats. They also rggmd¢oo many false alerts and cannot explain tresisoning. To
overcome these limitations, we are developing tlaitiine Activity Analysis Workbench (MAAW), which ibe a mixed-
initiative real-time maritime video surveillanceotdhat uses an integrated supervised machineifgpapproach to label
independent and coordinated maritime activitiesisks the same information to predict anomalous\iehand explain its
reasoning; this is an important capability for viestiander training and for collecting performancedfeack. In this paper,
we describe MAAW'’s functional architecture, whigftiudes the following pipeline of components: (lyideo acquisition
and preprocessing component that detects and tvasisgls in video images, (2) a vessel categavizatnd activity labeling
component that uses standard and relational siggervnachine learning methods to label maritimevitiets, and (3) an
ontology-guided vessel and maritime activity antawtdo enable subject matter experts (e.g., waaclgrs) to provide
feedback and supervision to the system. We reporfindings from a preliminary system evaluationriver traffic video.

1 INTRODUCTION

US Navy assets are under a constant threat ofitgredtack as evidenced by USS Cole bombing ewtetre 17 sailors lost
their lives! Merchant ships are also a convenient target foorists attempting to harm a nation’s defenses ez@homy.
There is a pressing need for decision support systéhat improve maritime domain awareness and eediuch
vulnerabilities. Some existing research systemseidorm activity pattern learning and anomalousvig prediction
pattern learning. However, they focus at a gldeaél on big vessels and open ocean traffic usaligble tracking data
from the automatic identification system (AlS). Wver, no existing video surveillance systems fooosnear-shore
activities. Those that are available use limitedrpeter-based surveillance approaches and do nettkreat intent prior to
perimeter breach. We are developing a systemedtdlie Maritime Activity Analysis Workbench (MAAWjJo fill this
capability gap.

MAAW is designed to be a mixed-initiative real-timearitime video surveillance tool that uses angraéed supervised
machine learning approach to label independentcamddinated maritime activities. It shall use tlane information to

predict anomalous behavior and explain its reagpnMAAW includes a pipeline of adaptive processdis) a video

acquisition and preprocessing component that deted tracks vessels in video images, (2) a behanalysis component
that performs vessel and activity classificatiomgstandard and relational supervised machinailegrtechniques, and (3)
a threat analysis component that shall perform driréiative data fusion to assess threat and ralisgs.

We have developed a preliminary version of MAAWIidao processing and behavior analysis componemtgeport the
following two novel contributions about this versio First, we represent contextual cues in a nmagitscene and use them
with an emerging technique calledllective case-based inferentteincrease the accuracy of maritime object digssion.

! http://en.wikipedia.org/wiki/lUSS_Cole_bombing



Second, we investigate the use of tandem classifitavhere the output from an upstream classifierg.( object

classification) is used to improve the performan€ehe downstream classification task (e.g., attielassification). We

evaluate the effectiveness of these approachesventraffic video data that we collected using MWA We found that

exploiting contextual cues with collective casedzhmference significantly increased vessel clasdibn accuracy. We also
show that tandem classification can significantigrease classification accuracy for low-level miauét activities and that its
effectiveness can be dramatically improved by imjprg the performance of its upstream components., (iobject

classification).

We organize the remainder of this paper as followe. introduce the topic of maritime domain awarsnisthe next
section. Next, we describe MAAW'’s functional areltiture and its component algorithms in Section &. &Valuate our
methods in Section 4 and we conclude with direstifmn future research in Section 6.

2 MARITIME DOMAIN AWARENESS

In an act of terrorism at the Yemini port of Adéime bombing of the USS Cole (DDG 67) completelyadied the ship and
claimed the lives of 17 sailors. The scope of sacts is global, as evidenced by a similar attatkhe French oil tanker
Limburg, also off the coast of Yemé@mttack on military and commercial maritime assetbut one of the many possible
ways to harm a nation’s defenses and its econontlyer® types of harmful acts include trafficking peoand other
resources across waterways in preparation for dustitacks. Maritime domain awareness is the effeainderstanding of
anything associated with the maritime domain tloatiat impact the security, safety, economy, or eminent of the United
States [1]. It involves securing various maritingsets [2], and continuous intelligence gatherindetect, deter, and prevent
terrorist acts. These efforts can occur at mawglée For example, at a global level, one couldknamerchant vessels and
automatically detect non-routine behavior, suchuaistified rendezvous and deviation from maniféstalert analysts
about a potential threat. Some programs and sféarth as the DARPA PANDA program [3] and thosthinprivate sector
[4] address the maritime domain awareness problethisilevel. In contrast, at a local level, onelldomonitor maritime
traffic at a port or harbor to detect unusual agtito prevent a terrorist plan from its intendeckeution.

In this paper, we focus on maritime domain awargéshe local level. In particular, we focus otivaties of small vessels
in littoral areas such as bays, harbors, riverd,@drannels. Our focus has its own share of probEmstechnical challenges
that are substantially different from those at tjlebal level. For example, small vessels can ekpdoisignificant
vulnerability in security infrastructure and opévas because they are hard to detect and tracky usimventional
surveillance methods. That is, they are not eatgfgcted by conventional radar, they do not use A they are much
more maneuverable and agile than large vessels. viitnerability is compounded by the geographidthitions presented
by the waterways in the littoral regions, whergyéavessels operate in a restricted maneuver mdgdeA5common but
limited solution to this problem is to instituteparimeter-based surveillance approach using a awtibh of regular and
thermal video cameras and radar sensors [6]. Pnirhased surveillance entails detecting mobiledtsj such as people
and vehicles and the breach of a virtual perimsterounding the target asset as the suspect oljexts toward the target.
This approach is limited in the following ways. stiland foremost, it can only detect potential nialis intent when the
virtual perimeter is breached. That is, it cannatleate intenputsideof the perimeter. Second, a large majority o5&ng
surveillance systems require manual monitoringhefvideo images from multiple sensors. This is [gnmiatic in terms of
the resources needed and the potential for missegttibn due to human factors such as fatigue @afeination overload.
Recently, some systems have begun to addressabrdsissue by using automatic video analytic apgves [7],[8]. These
systems use a combination of image processing apengsed classification approaches to detect eauk tobjects within
the area of interest under a variety of conditiasith impressive results at roughly 500ft. They gaite alarms based on a
variety of rules that specify limits on the perimetind/or on the set of activities. Their approsigmificantly reduces the
manual effort needed for effective video surveitanHowever, the task of malicious intent detectiunside the threat
boundary remains unaddressed.

2 http://en.wikipedia.org/wiki/Limburg_(ship)_bomigjn



In this paper, we address the problem of maliciotent detection before it becomesttaeat. Towards this goal,e are
developing an interactévand adaptive video surveillance sys that includes finggrained object categorization, activ
analysis, and threat prediction. Reseancnachine vision is concerned with sereasoning tasks. For examg[9] presents
a robust system calledvArRACK for scene understanding from vid Their system include24/7 video surveillance with
multiple cameras. It also perform®tion detection, tracking, and broad categorizatibobjectsby exploiting temporal and
spatial relationships in a scene to clasaifyivities. Our approach is similar to theirs a fhnctional level. Howeveours
differs markedly in methodologespeciallyfor activity analysis and threat predictioMore specificall, we perform fine-
grained categorization of objects aadtivities over eclassification hierarchyWe subcategorize overlapping vessel ty
instead of merely classifying vastly distinct oltjggpes such ahumanandtruck. Second, we use case-based reasoning
(CBR) approach for supervised learnmagher han a probabilistic approach (e.g., see [9]). Vde aseontologies to classify
objects and behaviors whose categories are hiécaflyhrepresente@and spatial relations tieveragecontextual cues in a
scene. Finally, the design olr approach iintended to uséterative feedback between image processing anditsic
analysis so as to improve MAAWtgasoning and learnircapabilities. Section 3 details capproac.

3 AN ADAPTIVE DECISION SU PPORT SYSTEM FOR MARITIME ACTIVITY AND
ANALYSIS AND THREAT PREDICTION

Naval assets can be particularly vulnerable whery tire moored or berthed in a harbor and \ they are underway in a
restricted maneuver mode. This is often compourmelimitations on surveillance imposed by localtarities and laws
For example, a vessel may be restricted from usingrraden moored at a port. The officers and saildvarged with
protecting their vessel must process an enormousuaimof information while balancing thcompeting priorities of
defending themselves andepenting engagemes withinnocent bystanders or friendly forces. By far, tlegermination o
threat intention is the most difficult phase force protection in a constrained environment.abaressthis need, we are
developing a decision support toolgmvide effective and efficient maritinsituationawareness for ar-terrorism and force
protection (ATFP) missions in the US NaMAAW, when completed, shall support and adapt todhcisio-making needs
of watchstanders and officers on naval vesentering littoral regions such as harbors, bayd,pemts, and in various inland
channels and waterways. BP operations aboard a ship require continuoustorimg of suspicious activity iassessment
warning, andthreat zones (see Figure MAAW shall effectively expand the situation assessment zwased on it
information processing and decision support cajiedsiland will acutely enhance situational aware. Our goal is to
enable detection of hostile intent much eathan is possible with current methods.
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Figure 1: Threat zones about a Navy ship of intere AT/FP operations

MAAW focuseson collecting and analyzing maritime surveillanégeo and fusing it with information from other soes tc
provide qualified threat assessments and issu¢sdlerthe shipboard security persol. It includes a series of adapti
processors, rangingdm video acquisition to threat analysis, desigrethteract with its user to issue alerts, providieat



assessments, and receive performance feedback ceitlections (see Figure 2).  Currently, we haveplé@mented

preliminary versions for the following componentédeo Acquisition, Video Processor, Behavior Inteter, and the Track
Viewer and Annotator. We detail these componentiénfollowing subsections, and report our findifigen evaluating the
performance of the Behavior Interpreter in Section
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Figure 22 MAAW's Functional Architecture

3.1 Video Acquisition

MAAW'’s Video Acquisition component operates wittkxdid video cameras at a variety of resolutions. é&@mple, using
the system, we recorded maritime traffic overlogkthe Potomac River in Washington, DC, and the tinaei traffic in
Boston’s Inner Harbor from a publicly accessiblebvemmera. The Potomac River images were recorded in a 10221
pixel 12 bit format at 1 second intervals. The Bastlarbor video was recorded at a lower resoluf820x240 pixels) and
were collected at over 1 second intervals. Videquisition performs several low-level image procegsiperations such as
image compression and cropping. For exampleppmed the images to exclude most of the sky. Th®meof each image
sequence representing the water surface is lablejetiand. The images from the web camera containddtantial
compression artifacts.

3.2 Image Processing

The main task of the Image Processor is to detedtteack moving vessels, which are performedO®tectorand the
Trackersubcomponents respectively.

Object Detection

The Detector identifies a moving object by a prece$ change detection. It does this by identifythgse regions in
individual frames that differ significantly fromehbackground. It constructs a Gaussian Backgrouadée\iof intensity for
each pixel in the scene based on its recent higeogy, [10]). It calculates the mean intensignd its standard deviatics?
of each pixel over a weighted time window. The eatif the pixel in the image from tintgcontributes to the background
model used at the current tirhevith the weight:

? http://www.seatowboston.com/harborcam.html



W, = e (t-t)/ Tiong _ g (1) Tepon
The first term allows the model to adjust to chanigeconditions and the second prevents the object being included as
part of the background model. For each pixel, inpates a significance score and compares it with a
threshold. The pixels above the threshold arerditteby a shrink and expand process and the corthect®ponents are
extracted as a detected image object. Componeaitslthnot touch the water surface, or those treatar small to be boats,
are discarded.

For each detection, a base point must be deterntmedable positional tracking. An important ciiber for choosing the
base point is that when the detected image is seljats base point should be near the bottomefidtected object where it
contacts the water. The base point is determinetth@asentroid of the detected image in the horialodirection and the
lowest vertical position of the image at which thidth of the region is half its maximum.

Tracking

A track is a collection of individual detections represemgta moving object. The Tracker takes as inputith&ge object
detections from the Detector and clusters them setgments. Segments are then pieced together trdgla Each segment
is made up of a set of image detections that hawghly the same velocity. The base point locatiminthe detected images
are converted into world coordinates by projectimgm onto the horizontal surface of the water Hevis:

X, =xe/(y, - h) Y,="fe/(y - h)

where K,, Y,) is the world position,X, y) is the base point in the image (rotated to corfi@ccamera roll if any),f is the
focal length of the camera (in pixel®,is the elevation of the camera above the watem@ers), andh is the vertical
position of the horizon in the image. Linear funas of time are fit to the base point location;gdeast squares estimation.
The errors in the detected positions are in imggee, and are related to changes in position imttidd by a non-linear
function. To take this into account, the error atle point is weighted by a matrix obtained by lnmag the detected
position. The detected images are assigned to segniy minimizing the total cost of all the segnseby simulated
annealing, a heuristic approach to optimization. idééude the total position error of the segmetiie,number of segments,
the number of detections not assigned to any segrennumber of “gaps” in each segment (imageshith the segment
should have had a detection but didn't), and théanee in computed height of each segment in the function for
simulated annealing.

Segments are combined into complete tracks bygitiintogether segments that match at their statteard points. The
assignment of detections to segments within eaak tare further tuned using the constraint thateeds in a track must be
disjoint in time; that is, the last detection okeasegment must precede the first detection inéxé n

A major source of tracking error is that the basimipof each detection does not always represensdme point on a vessel.
The location of the base point is subject to ndisen several sources. For example, the vessel nmiy lwe partially
detected, occluded, or combined with part of it&kevdn future work, image matching will be usedrtprove the alignment
of the detections.

3.3 Behavior Interpretation

The Behavior Interpreter’s function is to take @sut the track information extracted by the Videodessor and classify the
objects in the track and its activity. A track epresented as a series of segmentsvents each referring to a maritime
object and its attributes. Th@bject Classifierand theActivity Labelerare the two components within the Behavior
Interpreter that perform object and activity cléisation, respectively.

At an abstract level, our classifiers are functitimst take a vector of attributes as input and ipteal label for the object
represented by the input vector. For example, thie Classifier in MAAW takes a vector containifegtures of an object
such as its position, speed, and image signatwtepeedicts the label of that object. Such a cfisdion function can be
manually developed (e.g., one that uses hand-drafezision rules). However, a more robust apprdacto induce a



classifier from the observed data, also calledtthiming datg which includes the actual classification lab@sthe object.
This approach, callesupervisedearning, has obvious advantages over a manually develoledifier. For example, if the
conditions of the domain change, then a new ciassifan be induced by adding new labeled data enadinning the
learning algorithm. More specifically, changing #&/FP location (e.g., a different port or harboould completely change
the set of objects and activities of interest. Neaning data representing this change could beegatl and the Object
Classifier could be retrained to address this ceanghe decision environment. Furthermore, whefaasifier is used for
supporting operations, the users can continuedwige feedback and correct mislabeled objects. Te@dback can then be
used to further increase a classifier's accuracym8rous supervised learning methods for induciragsifiers exist.
Commonly used approaches include support vectohimes (SVM), the Naive Bayes classifier, and casseb (e.g., k-
nearest neighbor) classifiers. In MAAW, we currgntise case-based classifiers for all classificatasks. We briefly
overview their application in MAAW classificatioagks later in this section. In our future work, wi## explore additional
methods.

Although supervised learning approaches are morwezoent to use than a manual development prodksg, require

labeled observation data, which itself must be acquiredhually. This can be expensive depending on thereatfi the

classification task, the domain, and the desiredsification accuracy. Case-based methods haveeatj@ advantage in
this regard; they are simple to implement and expknd can perform comparably to more complexsifigss (e.g., SVMs)
with relatively few examples. Given that our prdjecin the initial phases and that we have airadbt small set of labeled
data, we chose case-based methods for MAAW's fieatson tasks.

To classify a newproblem casge.g., a maritime event extracted by the VideocPssor composed of attributes such as
speed, location, and object signature), a casedbasthod reuses the classifications of previoukdgsifiedcasesthat are
the mostsimilar to the new case. This requires a database ofdclvses called ease baseFor example, MAAW’s Object
Classifier relies on a case base of maritime euvbatsinclude the object labels generated from tatad tracks. We describe
this process of annotating tracks later in thistisac To assess the similarity of two cases (ieeproblem case and a
previously classified case), the classifier usesralarity metric. For example, the Euclidean dist@ metric can be used to
assess the similarity of the positions of two niauét objects. The cases that are the most simildret@inclassified object are
called itsnearest neighborsThe classifier retrieves thenearest neighbors from the case base and useing weethod to
predict the class label of the problem case. Tmgitine classifier for a task typically implies estiting the parameters of its
similarity metric. We describe our case-based aggives to object and activity classification in 8stB8.4.

3.4 Maritime Object Classification

We categorize maritime objects using a hierarchylgéct categories that are encoded in a Maritiméol@gy encoded
using OWL? For example, our hierarchy includes “Touring aigh&eeing Vessels”, “Patrol Boats”, and “Trashrfikiers”
as category labels. We developed this hierarchgadnsultation with a subject matter expert and theigation rules
handbook [5]. In the supervision phase of our igpibn, we use categories from this ontology feelfannotate the tracks
that have been detected by the Video ProcessofF{gaee 5).

* http://www.w3.org/TR/owl-features/
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Figure 5: MAAW 's user interface for annotating extracted tracks

Each event in an annotated traslkthen transformed into a ca/A case for the object classification téds represented by the
following attributes:

1. Obiject position This represents the position of a maritime objec twc-dimensional coordinate system. It is a tu
<p", p’> comprising two continuous real valueThe same are represented by the Trackeras World coordinates

2. Object velocity This represents the velocity vector (i.e., spaed direction) of a maritime object. Like objectsjtimn,
the velocity vectois represented in two dimensions using a tuy®, v'>.

3. Object image momentJhe Video Processor extracts images of objects froncemes including its shape, which
converts into a characteristic shape signaturep&bnatures or moments are a monly used technique for analy:
and comparison of 2D shapes. They capture infoonaiich as orientation, size, and shape bour[11]. We generate
fourth-order moments, which is a tuple comprising 15 ceatinuous valuesm’...m*>.

The maritime objecclassification task can be challenging becauaeks extracted by the Video Processor can be |
depending on a variety of application conditionstsas the weather, time of day, the size and timsbeu of objects, an
occlusion. For example, a siegbbject in the scene could result in multiple &us tracks with inaccurate attribute va
estimates. We explore one way to address this @nt: whether taking application and scene context irdcoant car
improve classification accuracy, even whaced with noisy track datawe include the context ca maritime scene by
employing the following group atlational attributes

4. Closest track objecfThese three attributes encode the spatial relsttip of a reference object (i the object that the
case represents) in a maritime scene to a reladeitimme object that is the closest to it. The dis@between a referer
object and a related object is computed based ein flositions in the tw-dimensional real world coordinates. T
attributes cmprise a tuple of three valueroc, rod, rob:

a. Related object categofyoc): This is a categorical label of the related obgstected from our Maritime Ontolog

b. Related object distandeod): This is the distance of the related object frihv referece object represented by
continuous real value greater than or equal t?\@& @efine our distance function belo

c. Related object bearingob): This is the angle between the velocity vectothef reference object and the posil
vector of a related object.

We compute similarity across these four attributeassesghe overall similarity of a new case to a storedecaWe
compute the ovelasimilarity by a weighted aggregation of attribugimilarities, where each attribute similarityceamputec
in a domainspecific manner (for details, pleasee [12]). Wing relational attributes in a case representacan be
problematic because some of the val(eg. “roc”) are initially unknown.For this purpose, we usecollective inference
process with our case-based classifier [1BFiefly, our collective case-based classifier finses a conventioncase-based



classifier with the non-relational attributes tegict the test objects’ labels. It then iterativpirforms collective inference
by (1) estimating the values of the relationalibtttes and (2) using them, along with the non-iehat attributes, to re-
predict the test objects’ labels. In our impleméaotg the predictions converge quickly, and we dimyse a pre-determined
number of iterations (10) for this procedure. Tdgorithm is called théerative Classification Algorithnfil4].

Activity Classification
We classify maritime activities at two levels usimg separate classifiers:

1. Primary. This level takes the perspective of the assetupdotection and identifies the basic maneuveas dhvessel
can perform independently. For example, “Cross$&ity; “Crossing-right”, and “Approaching” are sonoé the activity
labels at this level. These labels are organizedhierarchy of primitive activity types and areeded in the Maritime
Ontology.

2. Secondary This takes an asset independent view and cossaivities at a functional level of the activitlyor
example, “Cruising”, “Sightseeing and Touring”, diglinkering” are some of the labels denoting atitg at this level.
Like the primitive activity labels, these activiieare also hierarchically organized and encodedthén Maritime
Ontology.

The Primary Activity Classifieruses the following attributes for case represemtat Like the object classifier, it uses the
position and the velocity of an object as attrisutén addition, we use the “predicted object catggoutput by the Object
Classifier as an additional attribute. Therefotes Object Classifier and the Primary Activity Cifiss must operate in
tandemto classify primary activities. In other words tiwthe predicted object category as an attribibie activity classifier
must rely on the Object Classifier to provide itdue and subsequently perform the activity clasaifon.

In addition to the attributes used by the Primagtivity Classifier, the Secondary Activity Classifiuses the “predicted
primary activity” as an attribute. Like the PrimgaActivity Classifier, it must operate in tandemthviObject and Primary
Activity Classifiers to predict secondary activitiee compute the similarity of predicted objeatsl @redicted primary
activities using taxonomic distance [15], the detaf which we omit here due to lack of space.

The Behavior Interpreter hands off the automatyckdbeled tracks to th&@hreat Analyzerwhich shall fuse the labeled
tracks with harbor database information to asdesaits and issue alerts. End users will be akdedtept or reject MAAW's
decisions and provide corrective feedback, whichAMAwill use to update the track database.

3.5 Threat Analysis

The goal of the Threat Analyzer is to take the sifacmtion predictions from the Behavior Interpretes its input and
combine the data with additional information sosrte further assess threat. For example, the Behiterpreter could
classify a particular vessel and/or its activityoimn unknown category. This would cause the Tthiaalyzer to raise an
alarm for the watchstander. However, the contemtadd bases such as a Harbor Masters Message Batéba., a message
about an onboard systems failure) could be useddassify the object or activity as non-threatgnitMAAW will include

a conversational CBR16] component for gathering and fusing data frelectronic databases and/or human operators to
offer a final threat classification. Conversatio@BR systems progressively gather information adad from end-users
and systems to improve their precision in caséenet.

We have implemented a basic version of all the MAAWMmponents except the Threat Analyzer. Next, egoit our
findings from evaluating these components.



4 EMPIRICAL STUDIES

4.1 Objectives

Our goals for evaluating MAAW'’s Behavior Interpretaddress the following questions:

1. Does the use of relational attributes and colleciinference improve object classification perforoeh
2. Does tandem primargctivity classification outperform a non-tandemsien?
3. Does tandem secondaagtivity classification outperform a non-tandennsien?

4.2 Method

Data: We selected two days of video of maritime act@gtfrom the Potomac River in Washington, DC. Weliagphe
Video Processor to this data to detect tracks ofingpmaritime objects and their attributes (e.@sipon and velocities at
different points in time). Using MAAW, we then ldbd all the events in a track with appropriate obfategories, primary
activity labels, and secondary activity labels (Bagure 5).

Our database included 1578 cases in 23 object aésgfrom our Maritime Ontology, with proportiomanging from
46.64% to 0.13%. The top three most populous laetewave(46.64%),small-touring-vessg)9.76%), andvake(7.41%).
Half the object categories (e.gteam-paddle-touring-ves$etere relatively rare and occurred less than 2%heftime in
our data set.

The primary activity was labeled using 6 categofiesn the primary activity ontology. A large maifgr of activities

pertained to non-vessel phenomena such as wavewales (51.6%). The remainder were distributed betw‘crossing
left” (24.72%), “crossing right” (21.93%), “apprd@ing” (0.13%)” and “unknown activity” (1.57%). Likése, the

secondary activities were labeled using 14 catefgdrgls from the secondary activity ontology. Thp five most populous
labels in the set were “wave activity” (37.36%)outing and sightseeing” (19.71%), “cruising” (196§ “non-vessel
activity” (8.62%), and “wake activity” (5.64%).

Algorithms: To answer the questions we raised earkez,implemented the 8 algorithms using the Knexusssification
Workbench (KCLAW), a Java library for classificatitasks (See Table 1).

Table 1: Summary of classification algorithms evaluatedim experiments

Task Algorithm Description
Object OC-R Case-based collective classifier that usestioglal attributes representing the
Classification contextual cues from a maritime scene
OC-NR Case-based classifier that performs a coritegt classification by using only
non-relational attributes
Primary PAT Tandem case-based classifier that uses labadiécped by the object classifier
Activity PAT-P Tandem case-based classifier that assumdscpgP) (i.e., 100% accurate)
Classification object classification predictions as input
PA Non-tandem case-based classifier that ignoresptiedicted object category
attribute
Secondary SAT Tandem case-based classifier that includestsnfram the Object Classifier in
Activity its first stage and from the Primary Activity Cld&s in its second stage
Classification  "SAT-p Tandem case-based classifier that assumdscpgP) (i.e., 100% accurate)
object classification predictions and perfect priynactivity classification
SA Simple non-tandem classifier that ignores thedjated object and the predicted
primary activity attributes




Test Procedure:We used a leave-one-out cross validation (LOO@¥) procedure with some modifications. Conventional
LOOCYV procedures use one case from the databasesting and the remainder for training, cyclingptigh the entire case
base and averaging the results of individual t&%ts cannot use this here because collective infereperates ongraph of
related cases, and we chose to eliminate anyaetabtetween the training and test cases. Theref@grouped cases that
refer to co-occurring tracks and events within shene track; each such grouping yields a sifgtk(i.e., each fold’'s cases
have no relations with cases in other folds). Nex treated each fold as a test set and the urficases from the remaining
folds as the corresponding training set (i.e.,dhge base). This yields 1578 cases over 177 fiidsincludes 77elational
folds containing 1315 cases that have relationteibate values. The average number of cases perafoioss the entire data
set is 8.92. The average number of cases in raldtiolds was marginally greater (10.79). All tHgaaithms were applied
to each test set (i.e., fold) and their classifaraticcuracy was recorded. We analyzed the regsitg) one-tailed paired t-
tests.

4.3 Results

The results of our evaluation are summarized inld &b First, we compared the performance of aectilte case-based
classifier (OC-R) with a non-relational classifie@C-NR) on the object classification task. We fouthdt collective
classification outperforms the non-relational ciiess(56.22 % vs. 53.36%9=0.0001). This answers our first question: the
use of relational attributes and collective infa®significantly increases object classificationueacy.

Next, we compared the three algorithms for primagtivity classification to assess the effectivenesstandem
classification. The tandem version (PAT) of thassifier outperforms the non-tandem version (PA).68% vs. 81.29,
p=0.050). This provides support for our second higesis: Tandem primary activity classification sfgmantly increases
activity classification accuracy versus a non-tancheethod.

To examine whether there is room for performancpravement, we reviewed the performance of PAT-Pjdaalized
version of the tandem classifier that assumes giediject classification. Its performance is sigrahtly higher (89.08%)
compared to the non-idealized version (82.69%).s T$tiows that the effectiveness of tandem clasditacan be
dramatically improved by improving the performarmndehe Object Classifier.

Finally, we compare the three algorithms for seeowdactivity classification. The tandem versiorA{3 attains a lower
accuracy than the non-tandem version (63.19% v836®, p=0.353), although this difference is statisticatgignificant.

Like the Primary Activity Classifier, we examinguketpotential for performance improvement by asegstie performance
of an idealized version of the tandem classifieat tassumes perfect object and primary activity sifigation. This is

substantially higher (80.98% compared to 63.19%ntlwhen using the (possibly incorrect) predictetles from the
upstream classifiers. Thus, the performance of redany classification can be substantially improwsdincreasing the
accuracy of object and primary activity classifioat

Table 2. Average classification accuracies of the eiggbathms

Object Classifier OC-R OC-NR
56.22 53.36

Primary Activity Classifier PAT PAT-P PA
82.69 89.08 81.29

Secondary Activity Classifier SAT SAT-P SA
63.19 80.98 62.83

5 CONCLUSION

The existing surveillance infrastructure for mané asset and force protection is vulnerable dughdolack of adequate
decision support capabilities. In this paper, wported on the development and capabilities of steqy to reduce this
capability gap. Our system called MAAW uses a pipebf processors that include a Video ProcessengBior Interpreter,
and a Threat Analyzer. Together, these comporsdat provide a mixed-initiative threat assessnadility with the goal



of improving the ability to detect malicious intefiar beyond the immediate threat zone. Although, ¢urrent version of
MAAW is preliminary and partially implemented, weported on two technical contributions. First, yepleed an approach
to classification over relational data callegllective case-based classificatitm the task of maritime object classification.
We successfully exploited the elements of a maetdtene to significantly increase maritime objéms$sification accuracy.
Second, we used a novel problem representatioméoitime activity classification that requires ajsence of classifiers
(i.e., tandem classification). We showed that usirggitable problem representation with the tandkssification approach
can significantly increase accuracy, thereby itltitg the utility of our tandem classification apach.

Like any preliminary research development effotrsohas many limitations and shall require muchriitwvork. First, we

reported results using video from one location. Wilk consider additional locations in our futureadwations. Second, we
will complete the implementation of the Threat Armdr components and include feedback from the Behdnterpreter to

the Image Processor to investigate the potentiptorement for detection and tracking. Third, wd eonduct an empirical

study of detection and tracking performance, witichld have a significant bearing on the Behaviterpreter. Fourth, we
will consider several algorithmic improvements be thasic case-based classifier such as similamyiecrweight learning

and representation discovery. Finally, we will istigate the effectiveness of alternative clasdificamethods such as
support vector machines in our architecture.
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